Thursday, December 30, 2010

Scientist solves the Math of Cities

A must-read article from The New York Times about brilliant, 70-year-old physicist Geoffrey West, who has found a way to crack the code of what happens when population density occurs. West, has, in essence, turned the concept of a “city” into an elegant mathematical formula:
After two years of analysis, West and Bettencourt discovered that all of these urban variables could be described by a few exquisitely simple equations. For example, if they know the population of a metropolitan area in a given country, they can estimate, with approximately 85 percent accuracy, its average income and the dimensions of its sewer system. These are the laws, they say, that automatically emerge whenever people “agglomerate,” cramming themselves into apartment buildings and subway cars. It doesn’t matter if the place is Manhattan or Manhattan, Kan.: the urban patterns remain the same. West isn’t shy about describing the magnitude of this accomplishment. “What we found are the constants that describe every city,” he says. “I can take these laws and make precise predictions about the number of violent crimes and the surface area of roads in a city in Japan with 200,000 people. I don’t know anything about this city or even where it is or its history, but I can tell you all about it. And the reason I can do that is because every city is really the same.” After a pause, as if reflecting on his hyperbole, West adds: “Look, we all know that every city is unique. That’s all we talk about when we talk about cities, those things that make New York different from L.A., or Tokyo different from Albuquerque. But focusing on those differences misses the point. Sure, there are differences, but different from what? We’ve found the what.”
A Physicist Solves the City (New York Times)

via DangerousMinds

1 comment:

  1. Thank YOU for posting this....

    I read every word and then re-posted it to my facebook page.

    I found this utterly fascinating !!

    Warm regards,